MAth on the Fly!

	V	V

NAME: _____ DATE: ____

Trigonometry on the X-Y Plane

In each diagram, an angle θ has an initial side on the positive x–axis and a terminal side that passes through the given point.

Find the exact values of $\cos\theta$, $\sin\theta$ and $\tan\theta$ for each angle.

SOLUTIONS

$$\sin\theta = \frac{4}{5}$$

$$\cos\theta = \frac{3}{5}$$

$$\tan\theta = \frac{4}{3}$$

$$\sin\theta = \frac{12}{13}$$

$$\cos\theta = -\frac{5}{13}$$

$$\tan\theta = -\frac{12}{5}$$

$$\sin\theta = \frac{2}{\sqrt{40}}$$

$$\cos\theta = \frac{6}{\sqrt{40}}$$

$$\tan\theta = \frac{2}{6} = \frac{1}{3}$$

$$\begin{array}{ccc}
4 \cdot & \sin\theta &=& \frac{-6}{10} &=& -\frac{3}{5} \\
\cos\theta &=& \frac{-8}{10} &=& -\frac{4}{5} \\
\tan\theta &=& \frac{-6}{-8} &=& \frac{3}{4}
\end{array}$$

$$8 \cdot \sin\theta = -\frac{7}{\sqrt{53}}$$

$$\cos\theta = -\frac{2}{\sqrt{53}}$$

$$\tan\theta = \frac{-7}{-2} = \frac{7}{2}$$

$$9. \sin\theta = \frac{4}{\sqrt{32}}$$

$$\cos\theta = \frac{4}{\sqrt{32}}$$

$$\tan\theta = \frac{4}{4} = 1$$